Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Pathogens ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623951

RESUMO

Yersinia pestis, the etiological agent of the plague, is considered a genetically homogeneous species. Brazil is currently in a period of epidemiological silence but plague antibodies are still detected in sentinel animals, suggesting disease activity in the sylvatic cycle. The present study deployed an in silico approach to analyze virulence factors among 407 Brazilian genomes of Y. pestis belonging to the Fiocruz Collection (1966-1997). The pangenome analysis associated several known virulence factors of Y. pestis in clades according to the presence or absence of genes. Four main strain clades (C, E, G, and H) exhibited the absence of various virulence genes. Notably, clade G displayed the highest number of absent genes, while clade E showed a significant absence of genes related to the T6SS secretion system and clade H predominantly demonstrated the absence of plasmid-related genes. These results suggest attenuation of virulence in these strains over time. The cgMLST analysis associated genomic and epidemiological data highlighting evolutionary patterns related to the isolation years and outbreaks of Y. pestis in Brazil. Thus, the results contribute to the understanding of the genetic diversity and virulence within Y. pestis and the potential for utilizing genomic data in epidemiological investigations.

2.
Arch Virol ; 168(8): 210, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486383

RESUMO

Although transmitted mainly through direct (sexual) contact, mpox virus (MPXV) can be detected in ambient air. We explored the use of air sampling for diagnosis or (genomic) surveillance of mpox in a sexual health clinic. For six out of six patients who were infected with MPXV, all four of our ambient air PCR tests were positive. For 14 uninfected patients, PCR was positive in three ambient air samples, albeit with higher cycle threshold (Ct) values. Genomic sequencing of samples from two positive patients showed matching sequences between air and clinical samples.


Assuntos
Saúde Sexual , Humanos , Vírus da Varíola dos Macacos , Mapeamento Cromossômico , Genômica , Reação em Cadeia da Polimerase
4.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992353

RESUMO

We present a genome polymorphisms/machine learning approach for severe COVID-19 prognosis. Ninety-six Brazilian severe COVID-19 patients and controls were genotyped for 296 innate immunity loci. Our model used a feature selection algorithm, namely recursive feature elimination coupled with a support vector machine, to find the optimal loci classification subset, followed by a support vector machine with the linear kernel (SVM-LK) to classify patients into the severe COVID-19 group. The best features that were selected by the SVM-RFE method included 12 SNPs in 12 genes: PD-L1, PD-L2, IL10RA, JAK2, STAT1, IFIT1, IFIH1, DC-SIGNR, IFNB1, IRAK4, IRF1, and IL10. During the COVID-19 prognosis step by SVM-LK, the metrics were: 85% accuracy, 80% sensitivity, and 90% specificity. In comparison, univariate analysis under the 12 selected SNPs showed some highlights for individual variant alleles that represented risk (PD-L1 and IFIT1) or protection (JAK2 and IFIH1). Variant genotypes carrying risk effects were represented by PD-L2 and IFIT1 genes. The proposed complex classification method can be used to identify individuals who are at a high risk of developing severe COVID-19 outcomes even in uninfected conditions, which is a disruptive concept in COVID-19 prognosis. Our results suggest that the genetic context is an important factor in the development of severe COVID-19.


Assuntos
COVID-19 , Genoma Humano , Humanos , Antígeno B7-H1 , Helicase IFIH1 Induzida por Interferon , Brasil/epidemiologia , COVID-19/diagnóstico , COVID-19/genética , Inteligência Artificial , Algoritmos , Genômica
5.
Nat Med ; 28(11): 2288-2292, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35961373

RESUMO

The magnitude of the 2022 multi-country monkeypox virus (MPXV) outbreak has surpassed any preceding outbreak. It is unclear whether asymptomatic or otherwise undiagnosed infections are fuelling this epidemic. In this study, we aimed to assess whether undiagnosed infections occurred among men attending a Belgian sexual health clinic in May 2022. We retrospectively screened 224 samples collected for gonorrhea and chlamydia testing using an MPXV PCR assay and identified MPXV-DNA-positive samples from four men. At the time of sampling, one man had a painful rash, and three men had reported no symptoms. Upon clinical examination 21-37 days later, these three men were free of clinical signs, and they reported not having experienced any symptoms. Serology confirmed MPXV exposure in all three men, and MPXV was cultured from two cases. These findings show that certain cases of monkeypox remain undiagnosed and suggest that testing and quarantining of individuals reporting symptoms may not suffice to contain the outbreak.


Assuntos
Saúde Sexual , Masculino , Humanos , Vírus da Varíola dos Macacos , /epidemiologia , Estudos Retrospectivos , Bélgica/epidemiologia
6.
Arch Microbiol ; 204(8): 459, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35788427

RESUMO

To characterize phenotypically and genotypically an isolate of multidrug-resistant (MDR) K. pneumoniae from a patient with septicemia in a hospital in Recife-PE, Brazil, resistance and virulence genes were investigated using PCR and sequencing the amplicons, and the plasmid DNA was also sequenced. The K74-A3 isolate was resistant to all ß-lactams, including carbapenems, as well as to aminoglycosides and quinolones. By conducting a PCR analysis and sequencing, the variants blaNDM-7 associated with blaKPC-2 and the cps, wabG, fim-H, mrkD and entB virulence genes were identified. The analysis of plasmid revealed the presence of blaCTX-M15, aac(3)-IVa, aph(3')-Ia, aph(4)-Ia, aac(6')ib-cr, mph(A) and catB3, and also the plasmids IncX3, IncFIB, IncQ1, ColRNAI and ColpVC. To our knowledge, this is the first report of the blaNDM-7 gene in Recife-PE and we suggest that this variant is located in IncX3. These results alert us to the risk of spreading an isolate with a vast genetic arsenal of resistance, in addition to which several plasmids are present that favor the horizontal transfer of these genes.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Brasil , Farmacorresistência Bacteriana Múltipla/genética , Galanina/análogos & derivados , Humanos , Klebsiella pneumoniae/genética , Plasmídeos/genética , Análise de Sequência de DNA , Substância P/análogos & derivados , Virulência/genética , beta-Lactamases/genética
7.
Euro Surveill ; 27(48)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36695462

RESUMO

Vaccination is important in containing the 2022 mpox (formerly monkeypox) epidemic. We describe five Belgian patients with localised severe symptoms of proctitis and penile oedema, occurring between 4 and 35 days after post-exposure preventive vaccination or after one- or two-dose off-label pre-exposure preventive vaccination with MVA-BN vaccine. Genome sequencing did not reveal evidence for immune escape variants. Healthcare workers and those at risk should be aware of possible infections occurring shortly after vaccination and the need for other preventive measures.


Assuntos
Vacina Antivariólica , Humanos , Bélgica/epidemiologia , Vacina Antivariólica/efeitos adversos , Vacinação/efeitos adversos
8.
PeerJ ; 9: e11770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513323

RESUMO

BACKGROUND: The ZIKA virus (ZIKV) belongs to the Flaviviridae family, was first isolated in the 1940s, and remained underreported until its global threat in 2016, where drastic consequences were reported as Guillan-Barre syndrome and microcephaly in newborns. Understanding molecular interactions of ZIKV proteins during the host infection is important to develop treatments and prophylactic measures; however, large-scale experimental approaches normally used to detect protein-protein interaction (PPI) are onerous and labor-intensive. On the other hand, computational methods may overcome these challenges and guide traditional approaches on one or few protein molecules. The prediction of PPIs can be used to study host-parasite interactions at the protein level and reveal key pathways that allow viral infection. RESULTS: Applying Random Forest and Support Vector Machine (SVM) algorithms, we performed predictions of PPI between two ZIKV strains and human proteomes. The consensus number of predictions of both algorithms was 17,223 pairs of proteins. Functional enrichment analyses were executed with the predicted networks to access the biological meanings of the protein interactions. Some pathways related to viral infection and neurological development were found for both ZIKV strains in the enrichment analysis, but the JAK-STAT pathway was observed only for strain PE243 when compared with the FSS13025 strain. CONCLUSIONS: The consensus network of PPI predictions made by Random Forest and SVM algorithms allowed an enrichment analysis that corroborates many aspects of ZIKV infection. The enrichment results are mainly related to viral infection, neuronal development, and immune response, and presented differences among the two compared ZIKV strains. Strain PE243 presented more predicted interactions between proteins from the JAK-STAT signaling pathway, which could lead to a more inflammatory immune response when compared with the FSS13025 strain. These results show that the methodology employed in this study can potentially reveal new interactions between the ZIKV and human cells.

9.
Front Chem ; 9: 607139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987166

RESUMO

Leishmaniasis is a group of neglected infectious diseases, with approximately 1. 3 million new cases each year, for which the available therapies have serious limitations. Therefore, it is extremely important to apply efficient and low-cost methods capable of selecting the best therapeutic targets to speed up the development of new therapies against those diseases. Thus, we propose the use of integrated computational methods capable of evaluating the druggability of the predicted proteomes of Leishmania braziliensis and Leishmania infantum, species responsible for the different clinical manifestations of leishmaniasis in Brazil. The protein members of those proteomes were assessed based on their structural, chemical, and functional contexts applying methods that integrate data on molecular function, biological processes, subcellular localization, drug binding sites, druggability, and gene expression. These data were compared to those extracted from already known drug targets (BindingDB targets), which made it possible to evaluate Leishmania proteomes for their biological relevance and treatability. Through this methodology, we identified more than 100 proteins of each Leishmania species with druggability characteristics, and potential interaction with available drugs. Among those, 31 and 37 proteins of L. braziliensis and L. infantum, respectively, have never been tested as drug targets, and they have shown evidence of gene expression in the evolutionary stage of pharmacological interest. Also, some of those Leishmania targets showed an alignment similarity of <50% when compared to the human proteome, making these proteins pharmacologically attractive, as they present a reduced risk of side effects. The methodology used in this study also allowed the evaluation of opportunities for the repurposing of compounds as anti-leishmaniasis drugs, inferring potential interaction between Leishmania proteins and ~1,000 compounds, of which only 15 have already been tested as a treatment for leishmaniasis. Besides, a list of potential Leishmania targets to be tested using drugs described at BindingDB, such as the potential interaction of the DEAD box RNA helicase, TRYR, and PEPCK proteins with the Staurosporine compound, was made available to the public.

10.
Infect Genet Evol ; 93: 104926, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34020069

RESUMO

BACKGROUND: Acinetobacter spp. may cause difficult-to-treat nosocomial infections due to acquisition of carbapenemases, including New Delhi metallo-ß-lactamase (NDM). This genus has been pointed out as a possible actor in the early dissemination of blaNDM, and this gene has been documented in a variety of species. OBJECTIVE: Here we describe an Acinetobacter chengduensis (isolate FL51) carrying blaNDM recovered from coastal water in Brazil. METHODS: In vitro techniques included antimicrobial susceptibility and minimum inhibitory concentration tests, PCR, plasmid profile and matting-out/transformation assays. In silico approaches comprised comparative genomic analyses using appropriate databases. RESULTS: FL51 grew at room temperature in a variety of culture media, excluding MacConkey. It showed resistance to all beta-lactams tested and to ciprofloxacin. blaNDM-1 was identified, and a single replicon was observed in plasmid profile. In silico DNA hybridization revealed Acinetobacter FL51 as being Acinetobacter chengduensis. blaNDM-1 was flanked upstream by ISAba14-aphA6-ISAba125 and downstream by bleMBL-trpF-Δtat, inserted in a 41,068 bp non typeable plasmid named pNDM-FL51. This replicon showed high coverage and identity with other sequences present in plasmids deposited on the GenBank database, recovered almost exclusively from Acinetobacter spp., associated with hospital settings and animal sources. CONCLUSION: We described a recently described environmental Acinetobacter species carrying a plasmid-borne blaNDM associated with a Tn125-like structure. Our findings suggest that replicon may play an important role in blaNDM dissemination among distinct settings within this genus and may support the theory of blaNDM emergence from an environmental Acinetobacter.


Assuntos
Acinetobacter/isolamento & purificação , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , beta-Lactamases/genética , Acinetobacter/genética , Brasil , Testes de Sensibilidade Microbiana , Água do Mar/microbiologia
11.
Mol Microbiol ; 115(5): 942-958, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513291

RESUMO

Trypanosoma and Leishmania parasites cause devastating tropical diseases resulting in serious global health consequences. These organisms have complex life cycles with mammalian hosts and insect vectors. The parasites must, therefore, survive in different environments, demanding rapid physiological and metabolic changes. These responses depend upon regulation of gene expression, which primarily occurs posttranscriptionally. Altering the composition or conformation of RNA through nucleotide modifications is one posttranscriptional mechanism of regulating RNA fate and function, and modifications including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and pseudouridine (Ψ), dynamically regulate RNA stability and translation in diverse organisms. Little is known about RNA modifications and their machinery in Trypanosomatids, but we hypothesize that they regulate parasite gene expression and are vital for survival. Here, we identified Trypanosomatid homologs for writers of m1A, m5C, ac4C, and Ψ and analyze their evolutionary relationships. We systematically review the evidence for their functions and assess their potential use as therapeutic targets. This work provides new insights into the roles of these proteins in Trypanosomatid parasite biology and treatment of the diseases they cause and illustrates that Trypanosomatids provide an excellent model system to study RNA modifications, their molecular, cellular, and biological consequences, and their regulation and interplay.


Assuntos
Transcriptoma , Trypanosoma/genética , Tripanossomíase/parasitologia , Animais , Epigenômica , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma/enzimologia , Trypanosoma/metabolismo
12.
Viruses ; 12(12)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316947

RESUMO

Multiple epicenters of the SARS-CoV-2 pandemic have emerged since the first pneumonia cases in Wuhan, China, such as Italy, USA, and Brazil. Brazil is the third-most affected country worldwide, but genomic sequences of SARS-CoV-2 strains are mostly restricted to states from the Southeast region. Pernambuco state, located in the Northeast region, is the sixth most affected Brazilian state, but very few genomic sequences from the strains circulating in this region are available. We sequenced 101 strains of SARS-CoV-2 from patients presenting Covid-19 symptoms that reside in Pernambuco. Phylogenetic reconstructions revealed that all genomes belong to the B lineage and most of the samples (88%) were classified as lineage B.1.1. We detected multiple viral introductions from abroad (likely from Europe) as well as six local B.1.1 clades composed by Pernambuco only strains. Local clades comprise sequences from the capital city (Recife) and other country-side cities, corroborating the community spread between different municipalities of the state. These findings demonstrate that different from Southeastern Brazilian states where the epidemics were majorly driven by one dominant lineage (B.1.1.28 or B.1.1.33), the early epidemic phase at the Pernambuco state was driven by multiple B.1.1 lineages seeded through both national and international traveling.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Genoma Viral , Filogenia , SARS-CoV-2/genética , Brasil/epidemiologia , Cidades/epidemiologia , Evolução Molecular , Genômica , Humanos , Estudos Longitudinais , Mutação , Nasofaringe/virologia , Orofaringe/virologia , SARS-CoV-2/isolamento & purificação
13.
Front Genet ; 11: 542437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193616

RESUMO

BACKGROUND: Endogenous viral elements (EVEs) are sequences of viral origin integrated into the host genome. EVEs have been characterized in various insect genomes, including mosquitoes. A large EVE content has been found in Aedes aegypti and Aedes albopictus genomes among which a recently described Chuviridae viral family is of particular interest, owing to the abundance of EVEs derived from it, the discrepancy among the chuvirus endogenized gene regions and the frequent association with retrotransposons from the BEL-Pao superfamily. In order to better understand the endogenization process of chuviruses and the association between chuvirus glycoproteins and BEL-Pao retrotransposons, we performed a comparative genomics and evolutionary analysis of chuvirus-derived EVEs found in 37 mosquito genomes. RESULTS: We identified 428 EVEs belonging to the Chuviridae family confirming the wide discrepancy among the chuvirus genomic regions endogenized: 409 glycoproteins, 18 RNA-dependent RNA polymerases and one nucleoprotein region. Most of the glycoproteins (263 out of 409) are associated specifically with retroelements from the Pao family. Focusing only on well-assembled Pao retroelement copies, we estimated that 263 out of 379 Pao elements are associated with chuvirus-derived glycoproteins. Seventy-three potentially active Pao copies were found to contain glycoproteins into their LTR boundaries. Thirteen out of these were classified as complete and likely autonomous copies, with a full LTR structure and protein domains. We also found 116 Pao copies with no trace of glycoproteins and 37 solo glycoproteins. All potential autonomous Pao copies, contained highly similar LTRs, suggesting a recent/current activity of these elements in the mosquito genomes. CONCLUSION: Evolutionary analysis revealed that most of the glycoproteins found are likely derived from a single or few glycoprotein endogenization events associated with a recombination event with a Pao ancestral element. A potential functional Pao-chuvirus hybrid (named Anakin) emerged and the glycoprotein was further replicated through retrotransposition. However, a number of solo glycoproteins, not associated with Pao elements, can be found in some mosquito genomes suggesting that these glycoproteins were likely domesticated by the host genome and may participate in an antiviral defense mechanism against both chuvirus and Anakin retrovirus.

14.
J Proteomics ; 227: 103918, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712372

RESUMO

Bacterial insecticidal proteins, such as the Bin toxin from Lysinibacillus sphaericus, could be used more extensively to control insecticide resistant mosquitoes. This study was aimed at identification of mosquito cell proteins binding Bin toxin. Results showed that purified toxin was toxic to Anopheles gambiae larvae and Ag55 cultured cells. Clathrin heavy chain (an endocytosis protein) and glycolytic enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase were identified as binders of Bin toxin. The viability of Ag55 cells in the presence of endocytosis inhibitor, pitstop2, was significantly decreased upon Bin treatment, while the inhibitor chlorpromazine did not affect Bin toxicity. Bin toxin treatment decreased ATP production and mitochondrial respiration in Ag55 cells, whereas non-mitochondrial oxygen consumption significantly increased after Bin toxin treatment. These findings are steps towards understanding how Bin toxin kills mosquitoes. SIGNIFICANCE: Mosquitoes are vectors of pathogens causing human diseases such as dengue fever, yellow fever, zika virus and malaria. An insecticidal toxin from Lysinibacillus sphaericus called Binary, or Bin, toxin could be used more extensively to control insecticide resistant mosquitoes. Bin toxin enter cells in susceptible mosquitoes and induces apoptosis or autophagy. In the current research, we used the malaria mosquito Anopheles gambiae Ag55 cell line as a model. A proteomic-based approach identified proteins that interact with Bin toxin. Interacting proteins include clathrin heavy chain (endocytosis protein) and glycolysis enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase. In Ag55 cell toxicity assays, an endocytosis inhibitor, pitstop2, increased Bin toxicity. Real time assays with a Seahorse™ flux analyzer showed that Bin significantly affects mitochondrial respiration, a result consistent with cell death via apoptosis or autophagy. These research findings add insights into how an unusual binary protein exploits cellular machinery to kill mosquitoes.


Assuntos
Toxinas Bacterianas , Culex , Malária , Infecção por Zika virus , Zika virus , Animais , Bacillaceae , Proteínas de Transporte , Linhagem Celular , Humanos , Larva , Controle de Mosquitos , Mosquitos Vetores , Proteômica
15.
Rev Soc Bras Med Trop ; 53: e20190526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578705

RESUMO

INTRODUCTION: This study investigated the genetic environment of bla KPC-2 in Klebsiella pnemoniae multi-drug resistant clinical isolates. METHODS: Four carbapenemase gene isolates resistant to carbapenems, collected from infected patients from two hospitals in Brazil, were investigated using polymerase chain reaction and plasmid DNA sequencing. RESULTS: The bla KPC-2 gene was located between ISKpn6 and a resolvase tnpR in the non-Tn4401 element (NTEKPC-IId). It was detected on a plasmid belonging to the IncQ1 group. CONCLUSIONS: To our knowledge, this is the first report of the presence of the bla KPC-2 gene in the NTEKPC-IId element carried by plasmid IncQ1 from infections in Brazil.


Assuntos
Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , beta-Lactamases/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Humanos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Reação em Cadeia da Polimerase
17.
Rev. Soc. Bras. Med. Trop ; 53: e20190526, 2020. tab, graf
Artigo em Inglês | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1136834

RESUMO

Abstract INTRODUCTION: This study investigated the genetic environment of bla KPC-2 in Klebsiella pnemoniae multi-drug resistant clinical isolates. METHODS: Four carbapenemase gene isolates resistant to carbapenems, collected from infected patients from two hospitals in Brazil, were investigated using polymerase chain reaction and plasmid DNA sequencing. RESULTS: The bla KPC-2 gene was located between ISKpn6 and a resolvase tnpR in the non-Tn4401 element (NTEKPC-IId). It was detected on a plasmid belonging to the IncQ1 group. CONCLUSIONS To our knowledge, this is the first report of the presence of the bla KPC-2 gene in the NTEKPC-IId element carried by plasmid IncQ1 from infections in Brazil.


Assuntos
Humanos , beta-Lactamases/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Plasmídeos/genética , DNA Bacteriano/genética , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia
18.
Parasit Vectors ; 12(1): 407, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429782

RESUMO

BACKGROUND: The study of the mechanisms by which larvae of the Culex quinquefasciatus mosquito survive exposure to the entomopathogen Lysinibacillus sphaericus has benefited substantially from the generation of laboratory-selected colonies resistant to this bacterium. One such colony, RIAB59, was selected after regular long-term exposure of larvae to the L. sphaericus IAB59 strain. This strain is characterized by its ability to produce the well known Binary (Bin) toxin, and the recently characterized Cry48Aa/Cry49Aa toxin, able to kill Bin-resistant larvae. Resistance to Bin is associated with the depletion of its receptor, Cqm1 α-glucosidase, from the larvae midgut. This study aimed to identify novel molecules and pathways associated with survival of the RIAB59 larvae and the resistance phenotype. METHODS: A transcriptomic approach and bioinformatic tools were used to compare the profiles derived from the midguts of larvae resistant and susceptible to L. sphaericus IAB59. RESULTS: The RNA-seq profiles identified 1355 differentially expressed genes (DEGs), with 673 down- and 682 upregulated transcripts. One of the most downregulated DEGs was cqm1, which validates the approach. Other strongly downregulated mRNAs encode the enzyme pantetheinase, apolipoprotein D, lipases, heat-shock proteins and a number of lesser known and hypothetical polypeptides. Among the upregulated DEGs, the top most encodes a peroxisomal enzyme involved in lipid metabolism, while others encode enzymes associated with juvenile hormone synthesis, ion channels, DNA binding proteins and defense polypeptides. Further analyses confirmed a strong downregulation of several enzymes involved in lipid catabolism while the assignment of DEGs into metabolic pathways highlighted the upregulation of those related to DNA synthesis and maintenance, confirmed by their clustering into related protein networks. Several other pathways were also identified with mixed profiles of down- and upregulated transcripts. Quantitative RT-PCR confirmed the changes in levels seen for selected mRNAs. CONCLUSIONS: Our transcriptome-wide dataset revealed that the RIAB59 colony, found to be substantially more resistant to Bin than to the Cry48Aa/Cry49Aa toxin, developed a differential expression profile as well as metabolic features co-selected during the long-term adaptation to IAB59 and that are most likely linked to Bin resistance.


Assuntos
Bacillus/patogenicidade , Culex/genética , Culex/microbiologia , Resistência à Doença/genética , Animais , Toxinas Bacterianas/metabolismo , Biologia Computacional , Sistema Digestório/enzimologia , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Larva/genética , Larva/microbiologia , Fenótipo , RNA-Seq , alfa-Glucosidases/metabolismo
19.
Mol Genet Genomics ; 294(5): 1095-1105, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31098740

RESUMO

CRISPR/Cas is an adaptive immune system found in prokaryotes, with the main function of protecting these cells from invasion and possible death by mobile genetic elements. Pseudomonas aeruginosa is considered a model for type I-F CRISPR/Cas system studies. However, its CRISPR loci characteristics have not yet been thoroughly described, and its function has not yet been fully unraveled. The aims of this study were to find the frequency of the system in Brazilian clinical isolates; to identify the loci sequence, its spacer diversity and its origins; as well as to propose a unified spacer library to aid in future structural studies of the CRISPR loci of P. aeruginosa. We investigated types I-F and I-E gene markers to establish CRISPR/Cas typing, and observed two strains harboring both systems simultaneously, a very rare feature. Through amplification and sequencing of CRISPR loci related to type I-F system, we describe polymorphisms in DRs and 350 spacers, of which 97 are new. The spacers that were identified had their possible organisms or proteins of origin identified. Spacer arrays were grouped in five different CRISPR patterns and the plasticity was inferred by rearrangements in spacer arrays. Here, we perform the first detailed and focused description of CRISPR/Cas elements in Brazilian clinical strains of P. aeruginosa. Our findings reflect active and highly diverse CRISPR loci, and we suggest that CRISPR/Cas may also pose as a transcriptional regulatory mechanism. The structural and diversity features described here can provide insights into the function of CRISPR/Cas in this pathogen and help guide the development of new therapeutic strategies.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Pseudomonas aeruginosa/genética , Brasil , Marcadores Genéticos/genética , Transcrição Gênica/genética
20.
Front Immunol ; 10: 3145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117204

RESUMO

Background: A safe and effective vaccine against human leishmaniasis still requires the identification of better antigens for immunization and adequate models to evaluate the immune response. To support vaccine development, this work tested the immunogenicity of 10 different peptides derived from the proteome of Leishmania braziliensis, which were selected by their in silico affinity to MHC complexes. Research design and Methods: Comparative cell proliferation assays were performed by culturing, in the presence of each peptide, PBMC cells from subclinical subjects (SC), cutaneous leishmaniasis patients with active disease (AD), post-treatment (PT) individuals, and healthy controls. Culture supernatants were then used for Th1, Th2, and Th17 cytokine measurements. Cells from selected PT samples were also used to assess the expression, by T cells, of the T-bet Th1 transcription factor. Results: A robust cell proliferation was observed for the SC group, for all the tested peptides. The levels of Th1 cytokines were peptide-dependent and had substantial variations between groups, where, for instance, IFN-γ and TNF levels were some of the highest, particularly on PT cultures, when compared to IL-2. On the other hand, Th2 cytokines displayed much less variation. IL-6 was the most abundant among all the evaluated cytokines while IL-4 and IL-10 could be found at much lower concentrations. IL-17 was also detected with variations in SC and AD groups. T-bet was up-regulated in CD4+ and CD8+ T cells from the PT group after stimulation with all peptides. Conclusions: The peptide epitopes can differentially stimulate cells from SC, AD, and PT individuals, leading to distinct immune responses.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Humanos , Ativação Linfocitária/imunologia , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA